未来索引
开启左侧

NLPIR大数据挖掘通过知识图谱展现智能语义关系

[复制链接]
ljrj123 发表于 2019-7-9 10:57:35 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题
  当今社会是一个信息化社会的时代,同时又是一个大数据时代。随着互联网、物联网、云计算和人工智能等信息技术和计算机产业的不断发展和进步,使得数据的处理成为一个亟待解决的问题。因此在大数据的背景下,如何高效地从大量包含有用数据的库获得有用信息已成为企业和科研工作重点关注的点,而这一工作涉及的关键技术就是数据挖掘技术。总得说,数据处理的需要既给数据挖掘技术带来了机遇,于此同时带来了一系列的挑战。
  其中,知识图谱(Knowledge Graph)作为一种新的知识表示方法和数据管理模式,在自然语言处理、问题回答、信息检索等领域有着重要的应用。知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系;其基本组成单位是“实体-关系-实体”三元组,以及实体及其相关属性-值对,实体间通过关系相互联结,构成网状的知识结构。
  知识图谱构建是知识图谱得以应用发展的前提,涉及实体抽取和实体及实体之间关系的建立,同时还需要很好地组织和存储抽取的实体与关系信息,使其能够被迅速的访问和操作。知识图谱构建过程通常可以分成两步:知识图谱本体层构建和实体层的学习。本体层构建通常包含术语抽取、同义词抽取、概念抽取、分类关系抽取、公理和规则学习;实体层学习则包含实体学习、实体数据填充、实体对齐和实体链接等。
  北京理工大学大数据搜索与挖掘实验室张华平主任研发的KGB知识图谱引擎,KGB知识图谱引擎(Knowledge Graph Builder)是基于自然语言理解、汉语词法分析,采用KGB语法从结构化数据与非结构化文档中抽取各类知识,大数据语义智能分析与知识推理,深度挖掘知识关联,实时高效构建知识图谱。
  KGB知识图谱引擎功能介绍
  一、文档提取
  1、轻松解析多种格式文档:KGB知识图谱引擎,可轻松解析多种格式、多种版本文档:TXT、DOC、EXCEL、PPT、PDF、XML等。对于图片信息,OCR可自动识别并抽取图片中的文字信息。
  2、结构化表格数据知识抽取:KGB能够自适应解读并抽取结构化表格数据,实现知识的快速生成。
  3、非结构化文档知识抽取:KGB知识规则引擎,快速定位非结构化文档中的关键信息(主体、时间、金额等),高效抽取知识。
  二、知识关联
  KGB知识图谱引擎深入挖掘知识关联,将知识实体链接为有意义的知识事实。并具有强大的知识推理能力,推理暗含的知识与结论,丰富知识图谱。
  三、知识推理
  KGB具有强大的知识推理能力,推理出暗含的知识,获取更多知识与结论,丰富知识图谱。
  1、演绎归纳推理(一般—特殊):KGB能够完成由一般特征到特殊个案的演绎知识推理和由特殊个案到一般特征的归纳知识推理,扩充大量暗含的知识,丰富知识图谱。
  2、知识计算(数值知识的加减乘除计算):对于数值型知识,KGB能够识别并对数值型知识进行加减乘除的知识计算推理,并可对知识计算的准确性进行核查。
  3、知识库检查:KGB能够实时检查知识库,纠正知识错误与冲突,保证知识图谱正确性与一致性。
  随着信息技术在我国社会生活各个领域应用的深入,中文信息处理正在成为人们工作和生活中不可或缺的手段,中文信息处理将具有更加广阔的市场。这将促使中文信息处理方面的高效中文搜索引擎、实时机器翻译、大规模中文文本处理、跨平台中西文自动识别转换、泛中文语义理解、中文电子商务等技术实现重大突破。中文信息处理已成为我国信息技术研究、发展、应用和产业的基础,在互联网日益成长的今天,中文信息处理技术将会更加成熟并创新。

好好工作、努力提高!!!
高级模式
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

发布主题
阅读排行 更多
广告位
!jz_fbzt! !jz_sgzt! !jz_xgzt! 快速回复 !jz_sctz! !jz_fhlb! 搜索

智能技术共享平台 - 未来论

关注服务号

进入小程序

全国服务中心:

运维中心:天津

未来之家:天津 青岛 济南 郑州 石家庄

                商务邮箱:xy@mywll.com

Copyright © 2012-2019 未来派 未来论 (津ICP备16000236号-5)